Opposing facilitatory and inhibitory modulation of glutamate release elicited by cAMP production in cerebrocortical nerve terminals (synaptosomes).
نویسندگان
چکیده
Activation of cAMP-protein kinase A (PKA) is widely reported to facilitate synaptic transmission. Here, we examined the presynaptic loci of PKA action using isolated nerve terminals (synaptosoms). The adenylyl cyclase (AC) activator, forskolin, failed to have any effect on 4-aminopyridine (4-AP)-evoked glutamate release, when added alone. However, in the presence of the alkylxanthine, IBMX, forskolin strongly facilitated glutamate release. This potentiation of release was blocked by the PKA inhibitors Rp-cAMPS and H7. Given that IBMX has dual activity, antagonizing adenosine receptors as well as inhibiting cAMP phosphodiesterase, we examined the effect of a selective adenosine A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and RO20-1724, a specific phosphodiesterase inhibitor. Both unmasked the forskolin-mediated modulation of glutamate release. Conversely, the adenosine analogue, N(6)-cyclohexyladenosine (CHA), reversed the facilitation induced by forskolin+RO20-1724. Adenosine A(1) receptor activation, therefore, appears to curtail cAMP/PKA-induced potentiation of glutamate release. Looking at the targets for cAMP/PKA-mediated potentiation of glutamate release, while synaptosomal excitability was only marginally increased, basal and 4-AP-evoked-increases in [Ca(2+)](c) were substantially enhanced by forskolin+IBMX. Moreover, glutamate release elicited by Ca(2+)-ionophore (ionomycin)-induced Ca(2+)-entry was facilitated by forskolin+IBMX. cAMP/PKA-mediated facilitation of glutamate release may therefore involve modulation of Ca(2+)-entry, as well as downstream events controlling synaptic vesicle recruitment and exocytosis.
منابع مشابه
Unexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors.
Presynaptic 5-HT(2A) receptor modulation of glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated by using the 5-HT(2A/2C) receptor agonist (+/-)-1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). DOI potently inhibited 4-aminopyridine (4AP)-evoked glutamate release. Involvement of presynaptic 5-HT(2A) receptors in this modulation of 4AP-evoked release was...
متن کاملcAMP-dependent facilitation of glutamate release by beta-adrenergic receptors in cerebrocortical nerve terminals.
We have investigated the presence of a cAMP-protein kinase A-dependent pathway in cerebrocortical nerve terminals and its role in the modulation of glutamate release. The activation of adenylyl cyclase with forskolin enhances intrasynaptosomal cAMP and induces Ca2+-dependent glutamate release. The membrane permeant analogue dibutyryl cAMP mimics this facilitatory effect, whereas the inactive co...
متن کاملGinsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes).
We examined the effect of ginsenoside Rg1 or Rb1, the active ingredients of ginseng, on the release of endogenous glutamate from glutamatergic nerve terminals purified from rat cerebral cortex. Result showed that the Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine was facilitated by ginsenoside Rg1 or Rb1 in a concentration-dependent manner. Sequential experiments reveal that gi...
متن کاملPalmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals
The effect of palmitoylethanolamide (PEA), an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated. PEA inhibited the Ca²⁺-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration ...
متن کاملVolatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: basal release.
The effects of three volatile anesthetics (isoflurane, enflurane, and halothane) on basal release of glutamate and GABA from isolated rat cerebrocortical nerve terminals (synaptosomes) were compared using a dual isotope superfusion method. Concentration-dependent effects on basal release differed between anesthetics and transmitters. Over a range of clinical concentrations (0.5-2x minimum alveo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuropharmacology
دوره 44 5 شماره
صفحات -
تاریخ انتشار 2003